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One of the promising methods of well-sinking, expecially indrilling
through hard rock, involves the use of a high-temperature jet of gas,
At the points of intensive heating the rocks fracrure under the action
of thermal stresses. Under optimum conditions the rock undergoes frag-
mentation into small pieces, and the rock material does not fuse,

We shall formulate and solve the high-temperature drilling problem
on the assumption that the rock is elastic and fusion phenomena do not
occur, Expressions will be obtained in a simple closed form for the rate
of stationary drilling and the size of the particles in the fragmented
material.

1, Formulation of the problem, Consider an infinite, uniform, and
isotropic elastic body with an axially symmetric cavity in the form of
a semi-infinite cylinder with a rounded base (see Fig, 1), A high-
temperature jet of gas is played on the bottom of the cavity, The jet
originates from a reservoir with nozzle A, Thermoelastic stresses ap=
pear in the medium in accordance with the Duhamel-Neumann law
[1]. External stresses are assumed to be negligible in comparison with
the characteristic temperature stresses, The surface region of the body
undergoes fragmentation for sufficiently high stresses, and the resulting
particles are carried off by a gas jet, Brittle fragmentation is assumed,
and fusion effects are absent, These conditions impose a certain re-
striction on the temperature distribution in a purely brittle fragmen-
tation,

We shall employ the following basic assumption:

®fvd <€ 1 (ot = k/pey, (1.1)

where % is the thermal diffusivity, k is the thermal conductivity,

p is the density, c is the specific heat, d is a typical linear dimension
of the body (for example, the radius of curvature of the bottom, or the
radius of the cylinder), and v is the normal drilling velocity, i, e., the
rate of displacement of the boundary of the body (as a result of the
removal of the fragmented material) along the normal to the surface,

The assumption given by Eq. (1.1) means that the external tem-
perature field at each point on the boundary of the body penetrates to
a depth which is small in comparison with the characteristic linear
size of the part of the boundary which is subject to intensive heating,
The condition given by Eq. (1.1) is satisfied by low values of thermal
diffusivity for most rigid rocks. For example, if we suppose that d ~
~ 10 cm and take % = 1073 — 10"2 cm?/sec, which is realistic for typ-
ical rocks, we find from Eq, (1.1)that v > 107*— 10-3cm/sec. This
condition is not too restricting in view of the average rate of well-
sinking.

From Eq. (1.1) the normal rate of drilling at a given point on the
surface of the body is completely determined by the local flow pa-
rameters and the parameters of the body itself in the neighborhood of
this point, We shall use the Cartesian coordinates xyz with the origin
at a point 0 on the surface of the body, and the z axis normal to the
surface in the inward direction. The stress, deformation, and tem-
perature fields at 0 will then be slowly varying functions of x and y

but rapidly varying functions of z. These fields form a peculiar wall
layer, For the elastic displacement vector u, v, w, and the temper-
ature T in the neighborhood of 0 we have from Eq. (1.1) in the usual
approximation

v=9p=0, w=w(st), T=T(1, (1.2)

If we neglect inertial forces we find that the Lame equation as-
sumes the form [1]

02w aT
(M+20) zor —(BA+2p) a5 =0, (1.3)

whetre o is the linear expansion coefficient, and A and p are the Lame
constants, The elastic and thermal constants of the body are assumed
to be temperature-independent for the sake of simplicity. The initial
temperature of the body is assumed to be zero throughout,

From the conditions at infinity

dwldz=0,T=0 for 2 o0, (1.4)
and the Lame equation (1. 3) we find that

dw _ 3h+2p
B~ ato @.5)
From Hooke's law and Eq. (1.5) we find that the principal stresses
are given by

o ET
CS:,‘:xdyz—‘\t_—'v'7 Gz=0, (1.6)
Therefore, near the surface we have a two-dimensional stressstate
with multilateral compression. The compressing stress is a maximum
onthe surface and decreases rapidly with increasing depth z, The tem-
perature of the body satisfies the heat-conduction equation

02T ar

%9E = 5 (— time ), 1. 7)

(2359
and the boundary heat transfer condition at z = 0

ar
—kpr=k(To—T), (1.8)
where T, is the temperature of the incident gas at the point 0, and h
is the heat-transfer coefficient,

It is important to note that when Egs, (1.2)~(1.8) are valid for
stationary fragmentation, they are even more valid under the cor-
responding nonstationary conditions.

2, Statlonary drilling, 2.1. Let us first determine the normal rate
of stationary drilling, Suppose that the boundary of the half-space is
displaced with constant velocity v along the normal to its plane, and
the gas temperature T, and the coefficient h are constant on the bound-
ary, To find the remperature of the body we must solve the following
boundary-value problem:

T or

L v ot T (z——vt’>0),

6T—hT T) (z = vt)

—k az ( 0 - ’
T=0 8T/3z=10 for z—vt—o0 2.1)

The solution of this problem is

“anTo v (5 — vi)
R [_ % :[

T= (2.2)

The displacement of the boundary occurs as a result of continuous
fragmentation of the body, and the removal of the fragments by the
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stream, The stress state of the body is described by Eq. (1.8). Weshall
assume that the following additional boundary condition is valid on the
free surface of the half-space:
Gy == Gy == — Gy T (g=1wl), (2.3)

where Og is the compression strength of the body.

We then find from Egs, (1, 6), (2.2), and (2, 3) that the normal
drilling velocity is
hx [ aET, "‘

( »

PETE A =%e, T

2.4)

From the solution of the problem given by Eqs, (2,2) and (2, 4) we can
readily find the condition for the absence of fusion effects:

G <, 2.5)
where T_ is the melting point,

2,2. We shall now estimate the size of the particles produced as a
result of fragmentation, To do this we must consider in somewhat
greater detail the fragmentation mechanisms operating in the surface
Tayer, Two such mechanisms are possible in the case of compression.
One of them is connected with the propagation of cracks [2], and the
other with the loss of stability and local inhomogeneity of the mate-
rial [2], In our problem, the first mechanism operates during the
initial stage of crack development while the second mechanism pre-
dominates during the final stage, since thermal stresses are concen-
trated in a narrow layer near the surface, and a thin plate of material
in this layer is under the action of two equal principal compressing
stresses, The particles of the fragmenmed material are therefore thin
plates of thickness & which is much less than the characteristic linear
size b in the transverse direction.

To estimate & we shall assume that the entire elastic energy of
the particle which it has prior to fragmentation is converted into the
effective surface energy of this particle as a result of fragmentation,
‘which is given by

8BS U = v (25 + pd) . (2.6)

where U is the elastic energy per unit volume, y is the effective sur-
face energy per unit area, and § and p are the area and perimeter of
the particle in plan, respectively.

According to Eq. (2. 3)

1—w )
U=—F—0q" 2.7

and if we suppose that pé <« 2S, we find from Eq. (2. 6) that

2vE
6::('1—-'\’)552" (2.8)
The quantity b evidently depends on the ratio of the compression
strength o and the tensile strength Op. since when the plate is pulled
from the main body, one face of the plate experiences normal ten=-
sile stress

b= af (cs /Sp)‘, (2-9)

where f is a certain function,

Physical considerations suggest that when b > §-we must have
05 > Op and, conversely, when o; ~ ap we shquld have b ~ 6, ie,,
the mechanism involving loss of stability no longer operates. It can be
shown in the latter case that we can again use Eq. (2. 8) to estimate &
from known specific surface energy y.

Consider a numerical example, For silicate glass (TEy)Y/2 = 5+ 10°
kg/cma/z, ¥ =0,95, 0 =10 kg/cmz. Hence it follows from Eq. (2. 8)
that § = 0.2 cm, It is important to note that the values of y for rocks
have not been extensively investigated,

3. Nonstationary problem, 3.1. Let us retumn to the original ax-
ially symmetric drilling problem (Fig, 1), We shall consider sta-
tionary drilling, in which case the temperature of the body and the
shape of the cavity depend only on the variables § = z; — vst and p,

where z,, p are cylindrical coordinates (p = 0 on the axis of sym-
metry), and v, is the rate of drilling, In the present case the temper~
ature and velocity of the gas jet and, consequently, the heat transfer
coefficient are different at each point on the surface of the cavity, so
that the normal drilling rate v at each point will be related to the
unknown shape of the cavity & = &(p) as follows:

v=v,) VIFTTHT - @.1)

At the point where the gas stream comes to rest, which lies on the
axis of symmetry and on the surface of the body (§ =0, p =0), the
normal drilling rate v is equal to the drilling rate v,, Using Eq. (2.4)
which gives the normal drilling rate, we obtain the following ex~
pressions

he | GET,
e a e 1) ¢

Thus, the drilling rate v, is completely determined by the fol-
lowing parameters: the heat~transfer coefficient I, between the gas and
the solid at the point where the jet comes to rest, the stagnation
temperature T, of the gas stream, the density of the body, itsspecific
heat ¢, Young's madulus E, the linear thermal expansion «, the Pois-
son ratio v, and the compression strength og of the body,

The shape of the cavity in quasi~stationary approximation can be

‘determined by solving the gasdynamic temperature problem. The

additional boundary conditions for the temperature on the unknown
contour are given by Eqs. (3.1) and (2. 4). Imai's formula [3], ob-
tained from the boundary-layer equations, can be used to determine
the heat-transfer coefficient h. There is a device, however, which
can be used to obtain an approximate solution of the cavity-shape
problem, The temperature Ty and the stream velocity Uy on the sur-
face of the body (on the outer boundary of the boundary layer) will be
approximated by the functions

To=g(s), Us=YP(s) (s —arc length) , (3.3)
which are chosen on the basis of convenience and are specified to
within a number of adjustable constants, If we solve the boundary-
layer equations subject to Eq, (3. 3) on the outer surface, and use the
condition

d=9vs;

T= ok )

(3.4)
for the temperature of the gas on the surface of the body (found from
Egs. (1. 6) and (2.3)), we find the heat-transfer coefficient

R=0(s), (3.5)

which also depends on a number of constants,
If we eliminate v from (2, 4) and (3. 1) in the quasi-stationary ap=
proximation, we obtain the following relation connecting the shape of
the cavity ¢ = &(p) with the heat transfer coefficient h and temperature
Ty
1 h[aETy — (1 — v)cSgl
Vit @ opr BT, —(1—V5]

(3.8}

In terms of the parametric variable s (length of arc), and using
Egs. (3.3) and (3.5), we obtain

H
p == Se(s) ds,
0

P — o (5) (4B ()= (1 — )]
(= \ViITF@n 00=Snamo—a el ©D
o

which is the required equation for the shape of the cavity in parameiric
form,

From the shape of the cavity (determined to within a number of
constants) we can determine the gas flow in the cavity, and then find
the undetermined constants, In this way, all three problems, i,e., the
flow of the ideal gas in the cavity, the flow of a viscous gas in the
boundary layer, and the fragmentation of the solid under the action
of the temperature stresses are found to be closely related. The above
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method of solving the combined problem can also be used to obtain
the exact solution, although this will, of course, require the use of
computers,

3.2. Finally, we must determine the error which is introduced by
replacing the nonstationary problem (due to the curvilinear shape of
the cavity) by the quasi=stationary problem of solid fragmentation, To
do this, we must estimate the characteristic time T which is necessary
to reach the stationary state, The condition for quasi=steadiness can
then be written in the form

w<£d, (3.8)

where v is the normal drilling velocity and d is a typical linear di-
mension of the cavity. From Egs. (1.7) and (1.8) we can determine T
by solving the boundary-value problem

0T oT

o = o Je—2v@))t>0) T=0 for t=0;

8T
——k'a—Z:h(Tg—T) for z=0, 0<t<t1,

oT
T=Ty, 55— =0

5 for z=v(t)t, (v(£)>0), t>1),

1— h
(r=O® g m—m). @9

Dimensional analysis shows that
T=pf T2/ %Q? for <€, (3.10)

where B is a constant factor,
Using Egs. (2.4) and (3.10), we can reduce Eq. (3.8) to the form

Bulvd<<t. (3.11)

As can be seen, this quasi=steadiness condition follows from the basic
assumption given by Eq, (1.1).
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